Copied to
clipboard

?

G = C3×C2.C25order 192 = 26·3

Direct product of C3 and C2.C25

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C2.C25, C6.26C25, C12.95C24, 2- (1+4)7C6, 2+ (1+4)10C6, C2.6(C24×C6), (C6×D4)⋊69C22, C4.15(C23×C6), (C2×C6).10C24, (C6×Q8)⋊58C22, D4.9(C22×C6), (C3×D4).42C23, C22.4(C23×C6), Q8.13(C22×C6), (C3×Q8).43C23, (C2×C12).691C23, (C22×C12)⋊54C22, C23.27(C22×C6), (C3×2- (1+4))⋊9C2, (C22×C6).110C23, (C3×2+ (1+4))⋊11C2, C4○D410(C2×C6), (C6×C4○D4)⋊31C2, (C2×C4○D4)⋊19C6, (C2×D4)⋊18(C2×C6), (C2×Q8)⋊20(C2×C6), (C22×C4)⋊15(C2×C6), (C3×C4○D4)⋊28C22, (C2×C4).52(C22×C6), SmallGroup(192,1536)

Series: Derived Chief Lower central Upper central

C1C2 — C3×C2.C25
C1C2C6C2×C6C3×D4C6×D4C3×2+ (1+4) — C3×C2.C25
C1C2 — C3×C2.C25
C1C12 — C3×C2.C25

Subgroups: 930 in 810 conjugacy classes, 750 normal (8 characteristic)
C1, C2, C2 [×15], C3, C4, C4 [×15], C22 [×15], C22 [×15], C6, C6 [×15], C2×C4 [×60], D4 [×60], Q8 [×20], C23 [×15], C12, C12 [×15], C2×C6 [×15], C2×C6 [×15], C22×C4 [×15], C2×D4 [×45], C2×Q8 [×15], C4○D4 [×80], C2×C12 [×60], C3×D4 [×60], C3×Q8 [×20], C22×C6 [×15], C2×C4○D4 [×15], 2+ (1+4) [×10], 2- (1+4) [×6], C22×C12 [×15], C6×D4 [×45], C6×Q8 [×15], C3×C4○D4 [×80], C2.C25, C6×C4○D4 [×15], C3×2+ (1+4) [×10], C3×2- (1+4) [×6], C3×C2.C25

Quotients:
C1, C2 [×31], C3, C22 [×155], C6 [×31], C23 [×155], C2×C6 [×155], C24 [×31], C22×C6 [×155], C25, C23×C6 [×31], C2.C25, C24×C6, C3×C2.C25

Generators and relations
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, dcd=fcf=bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, ce=ec, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >

Smallest permutation representation
On 48 points
Generators in S48
(1 13 9)(2 14 10)(3 15 11)(4 16 12)(5 42 45)(6 43 46)(7 44 47)(8 41 48)(17 24 26)(18 21 27)(19 22 28)(20 23 25)(29 36 38)(30 33 39)(31 34 40)(32 35 37)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 35)(2 36)(3 33)(4 34)(5 27)(6 28)(7 25)(8 26)(9 32)(10 29)(11 30)(12 31)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)
(1 23)(2 24)(3 21)(4 22)(5 39)(6 40)(7 37)(8 38)(9 20)(10 17)(11 18)(12 19)(13 25)(14 26)(15 27)(16 28)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)
(5 7)(6 8)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)

G:=sub<Sym(48)| (1,13,9)(2,14,10)(3,15,11)(4,16,12)(5,42,45)(6,43,46)(7,44,47)(8,41,48)(17,24,26)(18,21,27)(19,22,28)(20,23,25)(29,36,38)(30,33,39)(31,34,40)(32,35,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,35)(2,36)(3,33)(4,34)(5,27)(6,28)(7,25)(8,26)(9,32)(10,29)(11,30)(12,31)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40), (1,23)(2,24)(3,21)(4,22)(5,39)(6,40)(7,37)(8,38)(9,20)(10,17)(11,18)(12,19)(13,25)(14,26)(15,27)(16,28)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (5,7)(6,8)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)>;

G:=Group( (1,13,9)(2,14,10)(3,15,11)(4,16,12)(5,42,45)(6,43,46)(7,44,47)(8,41,48)(17,24,26)(18,21,27)(19,22,28)(20,23,25)(29,36,38)(30,33,39)(31,34,40)(32,35,37), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,35)(2,36)(3,33)(4,34)(5,27)(6,28)(7,25)(8,26)(9,32)(10,29)(11,30)(12,31)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40), (1,23)(2,24)(3,21)(4,22)(5,39)(6,40)(7,37)(8,38)(9,20)(10,17)(11,18)(12,19)(13,25)(14,26)(15,27)(16,28)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48), (5,7)(6,8)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48) );

G=PermutationGroup([(1,13,9),(2,14,10),(3,15,11),(4,16,12),(5,42,45),(6,43,46),(7,44,47),(8,41,48),(17,24,26),(18,21,27),(19,22,28),(20,23,25),(29,36,38),(30,33,39),(31,34,40),(32,35,37)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,35),(2,36),(3,33),(4,34),(5,27),(6,28),(7,25),(8,26),(9,32),(10,29),(11,30),(12,31),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40)], [(1,23),(2,24),(3,21),(4,22),(5,39),(6,40),(7,37),(8,38),(9,20),(10,17),(11,18),(12,19),(13,25),(14,26),(15,27),(16,28),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48)], [(5,7),(6,8),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)])

Matrix representation G ⊆ GL4(𝔽13) generated by

3000
0300
0030
0003
,
12000
01200
00120
00012
,
01116
0100
1106
011012
,
1000
012012
001212
0001
,
01116
1016
0010
001112
,
10011
0101
00120
00012
,
5000
0500
0050
0005
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[0,0,1,0,11,1,1,11,1,0,0,0,6,0,6,12],[1,0,0,0,0,12,0,0,0,0,12,0,0,12,12,1],[0,1,0,0,1,0,0,0,11,1,1,11,6,6,0,12],[1,0,0,0,0,1,0,0,0,0,12,0,11,1,0,12],[5,0,0,0,0,5,0,0,0,0,5,0,0,0,0,5] >;

102 conjugacy classes

class 1 2A2B···2P3A3B4A4B4C···4Q6A6B6C···6AF12A12B12C12D12E···12AH
order122···233444···4666···61212121212···12
size112···211112···2112···211112···2

102 irreducible representations

dim1111111144
type++++
imageC1C2C2C2C3C6C6C6C2.C25C3×C2.C25
kernelC3×C2.C25C6×C4○D4C3×2+ (1+4)C3×2- (1+4)C2.C25C2×C4○D42+ (1+4)2- (1+4)C3C1
# reps115106230201224

In GAP, Magma, Sage, TeX

C_3\times C_2.C_2^5
% in TeX

G:=Group("C3xC2.C2^5");
// GroupNames label

G:=SmallGroup(192,1536);
// by ID

G=gap.SmallGroup(192,1536);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-2,1373,1059,2915,242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,d*c*d=f*c*f=b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*e=e*c,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽